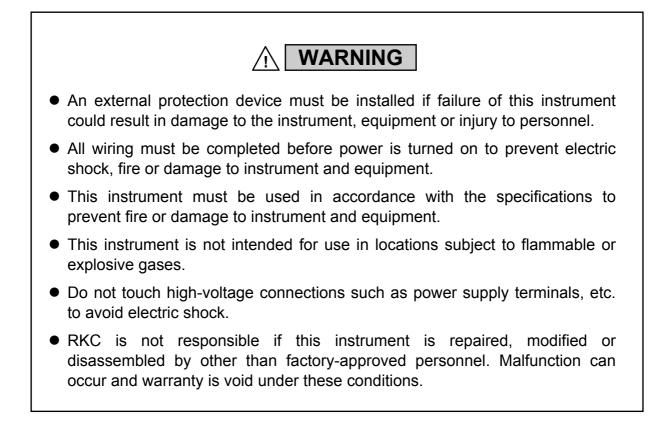
Temperature Controller

SA100L

Communication Instruction Manual

RKC[®] RKC INSTRUMENT INC.


IMR01J08-E1

- Modbus is a registered trademark of Schneider Electric.
- Company names and product names used in this manual are the trademarks or registered trademarks of the respective companies.

Thank you for purchasing the RKC instrument. In order to achieve maximum performance and ensure proper operation of your new instrument, carefully read all the instructions in this manual. Please place this manual in a convenient location for easy reference.

SYMBOLS

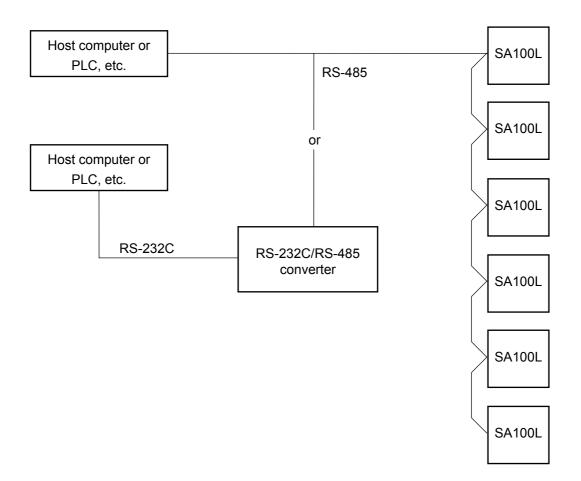
- **WARNING** : This mark indicates precautions that must be taken if there is danger of electric shock, fire, etc., which could result in loss of life or injury.
- **CAUTION** : This mark indicates that if these precautions and operating procedures are not taken, damage to the instrument may result.
 - : This mark indicates that all precautions should be taken for safe usage.
- : This mark indicates important information on installation, handling and operating procedures.
- : This mark indicates supplemental information on installation, handling and operating procedures.
- : This mark indicates where additional information may be located.

CAUTION

- This is a Class A instrument. In a domestic environment, this instrument may cause radio interference, in which case the user may be required to take adequate measures.
- This instrument is basic insulation between the power supply and the input/output. Provide reinforced insulation between the wire for the input signal and the wires for instrument power supply, source of power and loads.
- Be sure to provide an appropriate surge control circuit respectively for the following:
 - If input/output or signal lines within the building are longer than 30 meters.
 - If input/output or signal lines leave the building, regardless the length.
- This instrument is designed for installation in an enclosed instrumentation panel. All high-voltage connections such as power supply terminals must be enclosed in the instrumentation panel to avoid electric shock by operating personnel.
- All precautions described in this manual should be taken to avoid damage to the instrument or equipment.
- All wiring must be in accordance with local codes and regulations.
- All wiring must be completed before power is turned on to prevent electric shock, instrument failure, or incorrect action.
 The power must be turned off before repairing work for input break and output failure including replacement of sensor, contactor or SSR, and all wiring must be completed before power is turned on again.
- To prevent instrument damage or failure, protect the power line and the input/output lines from high currents with a protection device such as fuse, circuit breaker, etc.
- Prevent metal fragments or lead wire scraps from falling inside instrument case to avoid electric shock, fire or malfunction.
- Tighten each terminal screw to the specified torque found in the manual to avoid electric shock, fire or malfunction.
- For proper operation of this instrument, provide adequate ventilation for heat dispensation.
- Do not connect wires to unused terminals as this will interfere with proper operation of the instrument.
- Turn off the power supply before cleaning the instrument.
- Do not use a volatile solvent such as paint thinner to clean the instrument. Deformation or discoloration will occur. Use a soft, dry cloth to remove stains from the instrument.
- To avoid damage to instrument display, do not rub with an abrasive material or push front panel with a hard object.
- Do not connect modular connectors to telephone line.

NOTICE

- This manual assumes that the reader has a fundamental knowledge of the principles of electricity, process control, computer technology and communications.
- The figures, diagrams and numeric values used in this manual are only for purpose of illustration.
- RKC is not responsible for any damage or injury that is caused as a result of using this instrument, instrument failure or indirect damage.
- Periodic maintenance is required for safe and proper operation of this instrument. Some components have a limited service life, or characteristics that change over time.
- Every effort has been made to ensure accuracy of all information contained herein. RKC makes no warranty expressed or implied, with respect to the accuracy of the information. The information in this manual is subject to change without prior notice.
- No portion of this document may be reprinted, modified, copied, transmitted, digitized, stored, processed or retrieved through any mechanical, electronic, optical or other means without prior written approval from RKC.


CONTENTS

1.	OUTLINE	Page 1
2.	SPECIFICATIONS	2
3.	WIRING	4
4.	SETTING	6
	4.1 Transfer to Communication Setting Mode	6
	4.2 Setting the Communication Parameters	
	4.3 Communication Requirements	
5.	RKC COMMUNICATION PROTOCOL	.13
	5.1 Polling	13
	5.1.1 Polling procedures	14
	5.1.2 Polling procedure example	
	5.2 Selecting	
	5.2.1 Selecting procedures	
	5.2.2 Selecting procedure example 5.3 Communication Identifier List	
	5.3 Communication Identifier List	22
6.	MODBUS COMMUNICATION PROTOCOL	. 31
	6.1 Message Format	31
	6.2 Function Code	32
	6.3 Communication Mode	32
	6.4 Slave Response	33
	6.5 Calculating CRC-16	34
	6.6 Message Format	36
	6.6.1 Read holding registers [03H]	
	6.6.2 Preset single resister [06H]	
	6.6.3 Diagnostics (loopback test) [08H]	38

1. OUTLINE

SA100L interfaces with the host computer via Modbus or RKC communication protocols. For reference purposes, the Modbus protocol identifies the host computer as master, the SA100L as slave.

2. SPECIFICATIONS

■ RKC communication

Interface:	Based on RS-485, EIA standard
Connection method:	2-wire system, half-duplex multi-drop connection
Communication distance:	
	The maximum communication distance will be affected by the surrounding conditions.
Synchronous method:	Start/stop synchronous type
Communication speed:	2400 bps, 4800 bps, 9600 bps, 19200 bps
Data bit configuration:	Start bit: 1
	Data bit: 7 or 8
	Parity bit: Without, Odd or Even
	Stop bit: 1 or 2
Protocol:	ANSI X3.28 subcategory 2.5, A4
	Polling/selecting type
Error control:	Vertical parity (With parity bit selected)
	Horizontal parity (BCC check)
Communication code:	ASCII 7-bit code
Termination resistor:	Externally connected
Xon/Xoff control:	None
Maximum connections:	32 instruments maximum including a host computer
Signal logic:	RS-485
	Signal voltage Logic

 $V(A) - V(B) \ge 2 V$

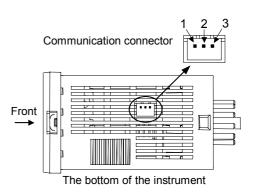
 $V(A) - V(B) \le -2 V$ 1 (MARK)Voltage between V (A) and V (B) is the voltage of (A) terminal for the
(B) terminal.

0 (SPACE)

Modbus

Based on RS-485, EIA standard method: 2-wire system, half-duplex multi-drop connection tion distance: 1 km max. The maximum communication distance will be affected by the
tion distance: 1 km max.
surrounding conditions.
s method: Start/stop synchronous type
tion speed: 2400 bps, 4800 bps, 9600 bps, 19200 bps
figuration:Data bit:8 (Byte data corresponding to binary data or bit.)Parity bit:Without, Odd or EvenStop bit:1
Modbus
mission mode: Remote Terminal Unit (RTU) mode
le: 03H (Read holding registers) 06H (Preset single register) 08H (Diagnostics: loopback test)
method: CRC-16
 Function code error When written to read only (RO) data, When any address other than 0000H to 001AH is specified, etc. When the data written exceeds the setting range, When the specified number of data items in the query message exceeds the maximum number of data items available Self-diagnostic error response
resistor: Externally connected
onnections: 32 instruments maximum including a master
RS-485
Signal voltage Logic
$V(A) - V(B) \ge 2 V$ 0 (SPACE)
$V(A) - V(B) \le -2 V$ 1 (MARK)

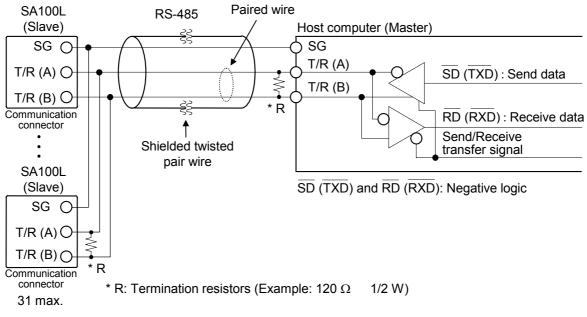
Voltage between V (A) and V (B) is the voltage of (A) terminal for the (B) terminal.

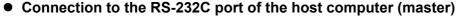

3. WIRING

To prevent electric shock or instrument failure, turn off the power before connecting or disconnecting the instrument and peripheral equipment.

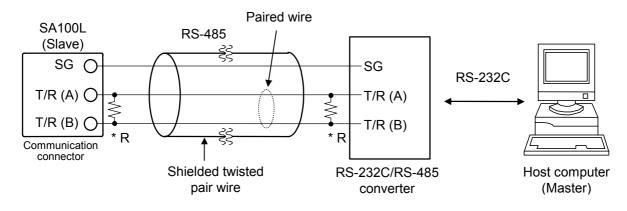
Connector pin number and signal details

Pin No.	Signal name	Symbol
1	Signal ground	SG
2	Send data/Receive data	T/R (A)
3	Send data/Receive data	T/R (B)

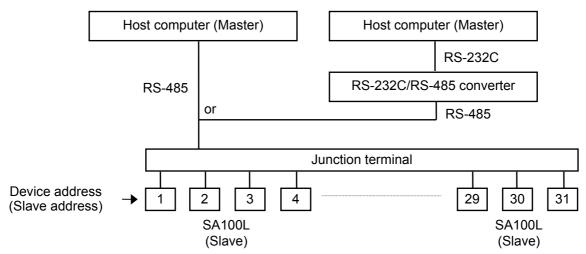



A connector and connector cable for connecting the input block is necessary to be prepared by the customer.

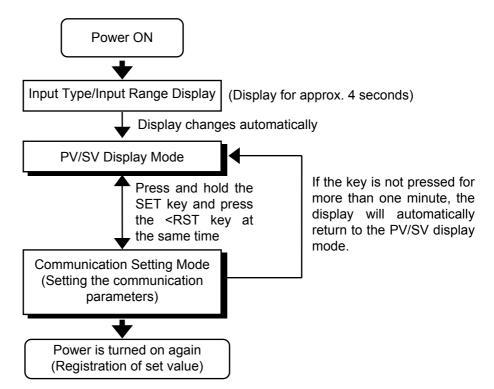
Housing:XHP-3 (J.S.T. Mfg. Co., Ltd. product)Recommended cable size:AWG 30 to 22


Wiring method

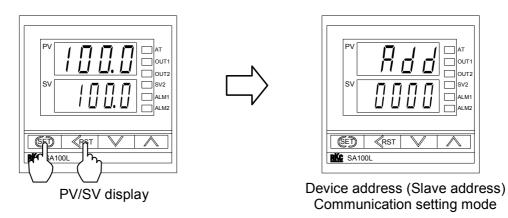
• Connection to the RS-485 port of the host computer (master)


A RS-232C/RS-485 converter is required.

* R: Termination resistors (Example: 120 Ω 1/2 W)


- When the host computer (master) uses **Windows 95/98/NT**, use a RS-232C/RS-485 converter with an automatic send/receive transfer function. Recommended: **CD485**, **CD485/V** manufactured by Data Link, Inc. or equivalent.
- The cable is provided by the customer.

Connection with up to 31 SA100L (slaves) and one host computer (master)


4. SETTING

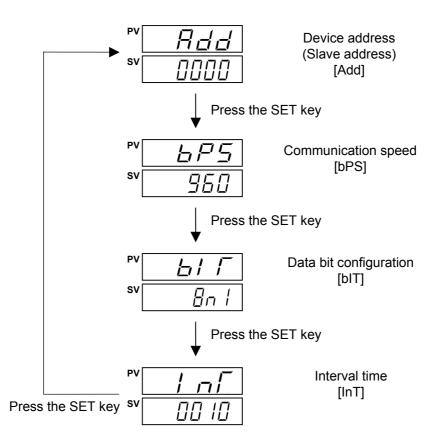
To establish communication parameters between host computer (master) and SA100L (slave), it is necessary to set the device address (slave address), communication speed, data bit configuration and interval time on each SA100L (slave) in the communication mode.

4.1 Transfer to Communication Setting Mode

To go to the communication setting mode, you must be in PV/SV display. Press and hold the SET key and press the <RST key at the same time to initiate communication settings. The first parameter to be displayed will be the device address (slave address), *Add*.

When let communication setting mode finish, press and hold the SET key and press the <RST key at the same time. The display changes to the PV/SV display.

4.2 Setting the Communication Parameters


To select parameters in communication setting mode, press the SET key. The parameters are displayed and sequenced in the order of device address (slave address), *Add*, communication speed, *bPS*, data bit configuration, *bIT* and interval time set value, *InT*.

Setting procedure

Setting procedure vary depending on the communication parameter.

- Device address *Add*, interval time *InT*
- Operate UP, DOWN and <RST key, and input numerals.
- Communication speed bPS, data bit configuration bIT

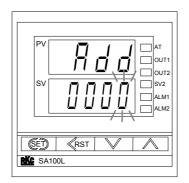
Operate UP and DOWN key, and choose one among the displayed set value.

Registration of set value

After completing all communication parameter settings, turn on the power again, and register the set value which changed.

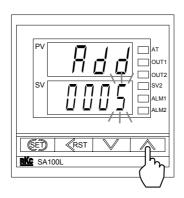
Symbol	Name	Setting range	Description	Factory set value
(Add)	Device address (Slave address)	0 to 99	Please set it not to duplication in multi-drop connection. If the slave address is set to 0 in Modbus, two-way	0
			communication cannot be performed.	
(bPS)	Communication speed	240:2400 bps480:4800 bps960:9600 bps1920:19200 bps	Set the same communication speed for both the SA100L (slave) and the host computer (master).	960
(bIT)	Data bit configuration	See data bit configuration table	Set the same data bit configuration for both the SA100L (slave) and the host computer (master).	8n1
	Interval time *	0 to 250 ms	The SA100L's interval time must match the specifications of the host computer.	10

Description of each parameters

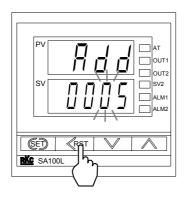

Data bit configuration table

Set value	Data bit	Parity bit	Stop bit]	
7, / (7n1)	7	Without	1])
7n2 (7n2)	7	Without	2		
7E / (7E1)	7	Even	1		
7 <i>E 2</i> (7E2)	7	Even	2		
7 ₀ / (701)	7	Odd	1		
7 ₀ 2 (7o2)	7	Odd	2		Setting range of
8n / (8n1)	8	Without	1		RKC communication
8n2 (8n2)	8	Without	2		
<i>BE</i> / (8E1)	8	Even	1	Setting range of	
8E2 (8E2)	8	Even	2	Modbus	
<i>Ba</i> / (801)	8	Odd	1		
	8	Odd	2		J

* The interval time for the SA100L should be set to provide a time for host computer to finish sending all data including stop bit and to switch the line to receive data. If the interval time between the two is too short, the SA100L may send data before the host computer is ready to receive it. In this case, communication transmission can not be conducted correctly. For a successful communication sequence to occur, the SA100L's interval time must match the specifications of the host computer.

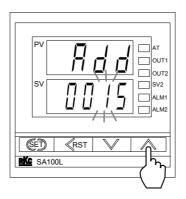

Setting procedure example

I. Go to the communication setting mode so that device address (slave address), *Add*, is displayed. Present set value is displayed, and the least significant digit blinks.

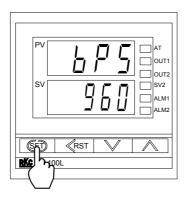


Device address (Slave address)

2. Set the device address. Press the UP key to enter 5 at the least significant digit. Example: Setting the device address (slave address) to 15.



3. Press the <RST key to blink the tens digit.



Continued on the next page.

4. Press the UP key to enter *I* at the tens digit.

5. Press the SET key to set the value thus set. The display changes to the next communication parameter. It the SET key is not pressed within 1 minute, the present display returns to the SV Setting & Monitor Mode and the value set here returns to that before the setting is changed.

Communication speed

4.3 Communication Requirements

■ Processing times during data send/receive

The SA100L requires the following processing times during data send/receive.

Whether the host computer is using either the polling or selecting procedure for communication, the following processing times are required for SA100L to send data:

-Response wait time after SA100L sends BCC in polling procedure

-Response wait time after SA100L sends ACK or NAK in selecting procedure

Procedure details	Time (ms)			
	MIN	TYP	MAX	
Response send time after SA100L receives ENQ	1.6	4.0	12	
Response send time after SA100L receives ACK	1.6	-	10	
Response send time after SA100L receives NAK	1.6	-	10	
Response send time after SA100L sends BCC	_	_	1.0	

RKC communication (Polling procedure)

RKC communication (Selecting procedure)

Procedure details		Time (ms)			
	MIN	TYP	MAX		
Response send time after SA100L receives BCC	1.6	3.0	10		
Response wait time after SA100L sends ACK	_	_	1.0		
Response wait time after SA100L sends NAK	_	_	1.0		

Modbus

Procedure details	Time
Read holding registers [03H] Response transmission time after the slave receives the query message	13 ms max.
Preset single register [06H] Response transmission time after the slave receives the query message	6 ms max.
Diagnostics (loopback test) [08H] Response transmission time after the slave receives the query message	6 ms max.

Response send time is time at having set interval time in 0 ms.

■ RS-485 (2-wire system) send/receive timing (RKC communication)

The sending and receiving of RS-485 communication is conducted through two wires; consequently, the transmission and reception of data requires precise timing. Typical polling and selecting procedures between the host computer and SA100L are described below:

• Polling procedure

	Send data (Possible/Impossible)	Possible
Host computer	Sending status	E O O T K K
Controller	Send data (Possible/Impossible)	Possible Impossible
Controller	Sending status	S T X C C

a: Response send time after SA100L receives [ENQ] + Interval time

b: Response send time after SA100L sends BCC

c: Response send time after SA100L receives [ACK] + Interval time or Response send time after SA100L receives [NAK] + Interval time

• Selecting procedure

	Send data (Possible/Impossible)	Possible Impossible	
Host computer	Sending status		S B X C
Controllor	Send data (Possible/Impossible)	Possible Impossible	
Controller	Sending status		A C K or A K

a: Response send time after SA100L receives BCC + Interval time

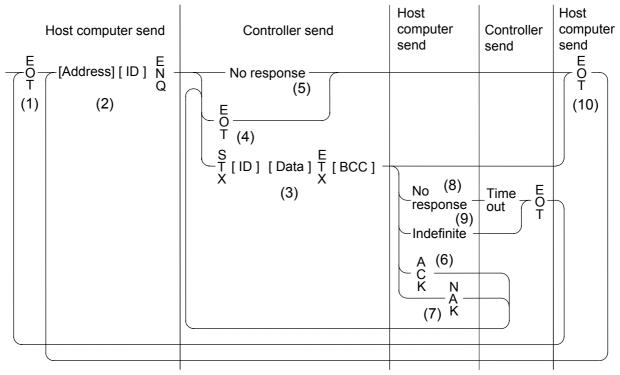
- b: Response wait time after SA100L sends ACK or Response wait time after SA100L sends NAK
 - To switch the host computer from transmission to reception, send data must be on line. To check if data is on line, do not use the host computer's transmission buffer but confirm it by the shift register.
 - Whether the host computer is using either the polling or selecting procedure for communication, the following processing times are required for SA100L to send data:

-Response wait time after SA100L sends BCC in polling procedure

-Response wait time after SA100L sends ACK or NAK in selecting procedure

Fail-safe

A transmission error may occur with the transmission line disconnected, shorted or set to the high-impedance state. In order to prevent the above error, it is recommended that the fail-safe function be provided on the receiver side of the host computer. The fail-safe function can prevent a framing error from its occurrence by making the receiver output stable to the MARK (1) when the transmission line is in the high-impedance state.


5. RKC COMMUNICATION PROTOCOL

The temperature controller SA100L (hereafter, called controller) uses the polling/selecting method to establish a data link. The basic procedure is followed ANSI X3.28 subcategory 2.5, A4 basic mode data transmission control procedure (Fast selecting is the selecting method used in this controller).

- The polling/selecting procedures are a centralized control method where the host computer controls the entire process. The host computer initiates all communication so the controller responds according to queries and commands from the host.
- The code use in communication is 7-bit ASCII code including transmission control characters. The transmission control characters are EOT (04H), ENQ (05H), ACK (06H), NAK (15H), STX (02H) and ETX (03H). The figures in the parenthesis indicate the corresponding hexadecimal number.

5.1 Polling

Polling is the action where the host computer requests one of the connected controllers to transmit data. An example of the polling procedure is shown below:

ID: Identifier

5.1.1 Polling procedures

(1) Data link initialization

Host computer sends EOT to the controllers to initiate data link before polling sequence.

(2) Data sent from host computer - Polling sequence

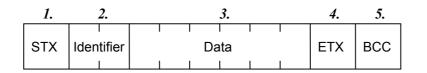
Host computer sends polling sequence with the format shown below:

1. Device address (2 digits)

The device address specifies the controller to be polled and each controller must have its own unique device address.

For details, see 4.2 Setting the Communication Parameters (P. 7).

2. Identifier (2 digits)


The identifier specifies the type of data that is requested from the controller.

- For details, see **5.3 Communication Identifier List (P. 22)**.
- 3. ENQ

The ENQ is the transmission control character that indicates the end of the polling sequence. The ENQ must be attached to the end of the identifier. The host computer then must wait for a response from the controller.

(3) Data sent from the controller

If the polling sequence is received correctly, the controller sends data in the following format:

1. STX

STX is the transmission control character which indicates the start of the text transmission (identifier and data).

2. Identifier (2 digits)

The identifier indicates the type of data (measured value, status and set value) sent to the host computer.

For details, see **5.3 Communication Identifier List (P. 22)**.

3. Data (6 digits [Expect model code and ROM version number.]) Data is the information being sent from the controller. It is expressed in decimal ASCII code including a minus sign (-) and a decimal point. No zero suppression is made.

4. ETX

ETX is a transmission control character used to indicate the end of text transmission.

5. BCC

BCC (Block Check Character) detects error using horizontal parity and is calculated by horizontal parity (even number).

Calculation method of BCC: *Exclusive OR* all data and characters from STX through ETX, not including STX.

Example:

STX	М	1	0	0	0	5	0	0	ETX	BCC	
	4DH	31H	30H	30H	30H	35H	30H	30H	03H	←	 Hexadecimal number

BCC = $4DH \oplus 31H \oplus 30H \oplus 30H \oplus 30H \oplus 35H \oplus 30H \oplus 30H \oplus 03H = 7AH$ Value of BCC becomes 7AH.

(4) EOT sent from the controller (Ending data transmission from the controller)

In the following cases, the controller sends EOT to terminate the data link:

- When the specified identifier is invalid
- When there is an error in the data type
- When all the data has been sent

(5) No response from the controller

The controller will not respond if the polling address is not received correctly. It may be necessary for the host computer to take corrective action such as a time-out.

(6) ACK (Acknowledgment)

An acknowledgment ACK is sent by the host computer when data received is correct. When the controller receives ACK from the host computer, the controller will send any remaining data of the next identifier without additional action from the host computer.

For the identifier, see **5.3 Communication Identifier List (P. 22)**.

When host computer determines to terminate the data link, EOT is sent from the host computer.

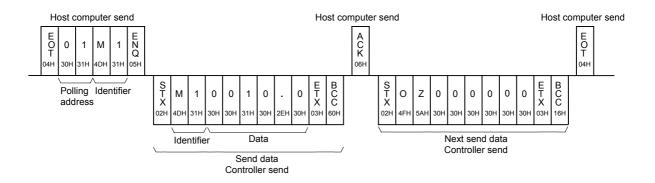
(7) NAK (Negative acknowledge)

If the host computer does not receive correct data from the controller, it sends a negative acknowledgment NAK to the controller. The controller will re-send the same data when NAK is received. This cycle will go on continuously until either recovery is achieved or the data link is corrected at the host computer.

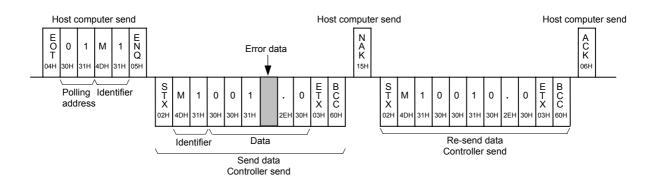
(8) No response from host computer

When the host computer does not respond within approximately three seconds after the controller sends data, the controller sends EOT to terminate the data link.

(9) Indefinite response from host computer

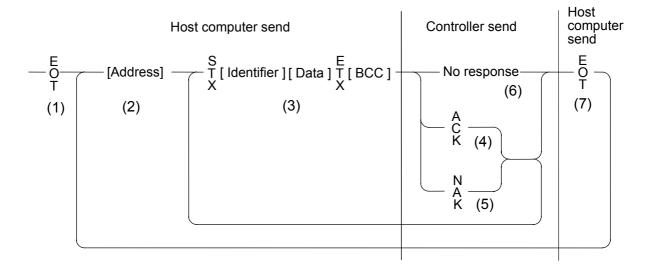

The controller sends EOT to terminate the data link when the host computer response is indefinite.

(10) EOT (Data link termination)


The host computer sends EOT message when it is necessary to suspend communication with the controller or to terminate the data link due lack of response from the controller.

5.1.2 Polling procedure example

Normal transmission



Error transmission

5.2 Selecting

Selecting is the action where the host computer requests one of the connected controllers to receive data. An example of the selecting procedure is shown below:

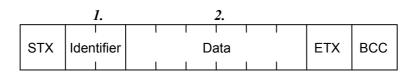
5.2.1 Selecting procedures

(1) Data link initialization

Host computer sends EOT to the controllers to initiate data link before selecting sequence.

(2) Sending selecting address from the host computer

Host computer sends selecting address for the selecting sequence.


Device address (2 digits)

The device address specifies the controller to be selected and each controller must have its own unique device address.

For details, see **4.2 Setting the Communication Parameters (P. 7)**.

(3) Data sent from the host computer

The host computer sends data for the selecting sequence with the following format:

For the STX, ETX and BCC, see **5.1 Polling (P. 13)**.

1. Identifier (2 digits)

The identifier specifies the type of data that is requested from the controller, such as set value. For details, see **5.3 Communication Identifier List (P. 22)**.

2. Data (Maximum 6 digits)

Data is the information being sent to the controller. It is expressed in decimal ASCII code including a minus sign (-) and a decimal point (period).

• About numerical data

The data that receipt of letter is possible

- Data with numbers below the decimal point omitted or zero suppressed data can be received.
 - <Example> When data send with -001.5, -01.5, -1.5, -1.50, -1.500 at the time of -1.5, controller can receive a data.
- When the host computer send data with decimal point to item of without decimal point, controller receives a message with the value which cut off below the decimal point.

<Example> When setting range is 0 to 200, controller receives as a following.

Send data	0.5	100.5
Receive data	0	100

• Controller receives value in accordance with decided place after the decimal point. The value below the decided place after the decimal point is cut off.

<example></example>	When setting range	e is -10.00 to +10.00,	controller receives as	a following.

Send data	5	058	.05	-0
Receive data	-0.50	-0.05	0.05	0.00

The data that receipt of letter is impossible

Controller sends NAK when received a following data.

+	Plus sign and the data that gained plus sing
_	Only minus sign (there is no figure)
	Only decimal point (period)
	Only minus sign and decimal point (period)

(4) ACK (Acknowledgment)

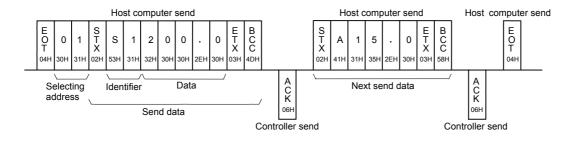
An acknowledgment ACK is sent by the controller when data received is correct. When the host computer receives ACK from the controller, the host computer will send any remaining data. If there is no more data to be sent to controller, the host computer sends EOT to terminate the data link.

(5) NAK (Negative acknowledge)

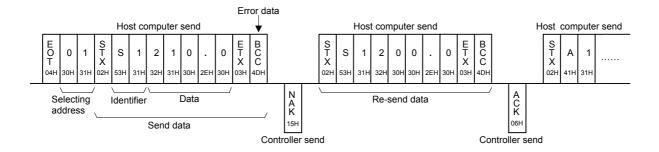
If the controller does not receive correct data from the host computer, it sends a negative acknowledgment NAK to the host computer. Corrections, such as re-send, must be made at the host computer. The controller will send NAK in the following cases:

- When an error occurs on communication the line (parity, framing error, etc.)
- When a BCC check error occurs
- When the specified identifier is invalid
- When receive data exceeds the setting range

(6) No response from controller


The controller does not respond when it can not receive the selecting address, STX, ETX or BCC.

(7) EOT (Data link termination)


The host computer sends EOT when there is no more data to be sent from the host computer or there is no response from the controller.

5.2.2 Selecting procedure example

Normal transmission

Error transmission

5.3 Communication Identifier List

Communication is not possible when an identifier is specified that the controller can not recognize.

The number of digits for data is 6.

Normal setting data

Name	lden- tifier	Data range	Factory set value	Attribute
Model code	ID	Display the model code		RO
Measured value (PV)	M1	Within input range		RO
Limit action monitor	OZ	0: Normal 1: Limit output ON 2: EXCD status	0	RO
Burnout	B1	0: OFF 1: ON		RO
Alarm 1 status	AA	0: OFF		RO
Alarm 2 status	AB	1: ON		RO
Peak hold value monitor	НР	Setting limiter [low] to Setting limiter [high]		RO
Bottom hold value monitor	HQ	Setting limiter [low] to Setting limiter [high]		RO
EXCD time	ТН	0.00 to 999.59 (0 min 00 sec to 999 min 59 sec)		RO
Limit action release	HR	Transfer of limit action release signal "0" setting: 0: Limit action release (always "1") "1" setting: 1: Limit action release (always "0")	1	R/W
Alarm interlock release	IR	0: Interlock release (always "1")	1	R/W ¹
Set value (SV)	S1	Setting limiter [low] to Setting limiter [high]	0 (0.0)	R/W
Alarm 1 set value	A1	Process alarm, SV alarm: Same as input range Deviation alarm: –Span to +Span However, within –1999 to +9999 digits	Temperature input: 50 (50.0) Voltage/current inputs: 5.0	R/W ²

¹ If Alarm 1, Alarm 2, Alarm 1 interlock, or Alarm 2 interlock are not provided, the attribute becomes RO.

 2 If Alarm 1 is not provided, the attribute becomes RO.

Continued on the next page.

(Attribute RO: Read only, R/W: Read and Write)

Name	lden- tifier	Data range	Factory set value	Attribute
Alarm 1 timer	TD	0 to 9999		R/W ¹
Alarm 2 set value	A2	Process alarm, SV alarm: Same as input range Deviation alarm: –Span to +Span However, within –1999 to +9999 digits	Temperature input: 50 (50.0) Voltage/current inputs: 5.0	R/W ²
Alarm 2 timer	TG	0 to 9999	0	R/W ³
PV bias	PB	-Span to +Span However, within –1999 to +9999 digits	Temperature input: 0 (0.0) Voltage/current inputs: 0.0	R/W
PV ratio	PR	0.500 to 1.500	1.000	R/W
Digital filter	F1	0 to 100 seconds (0: OFF)	0	R/W
Analog output selection ⁴	LA	0: Measured value (PV) 1: Set value (SV) 2: Deviation	0	Note 1
Analog output scale high ^{4, 5}	HV	Measured value (PV), Set value (SV): Same as input range Deviation: –Span to +Span	Temperature input: Input range (high limit) Voltage/current inputs: 100.0	
Analog output scale low ^{4,5}	HW		Temperature input: Input range (low limit) Voltage/current inputs: 0.0	

¹ If Alarm 1 is not provided or Alarm 1 timer unit is set to 0, the attribute becomes RO.

 2 If Alarm 2 is not provided, the attribute becomes RO.

³ If Alarm 2 is not provided or Alarm 2 timer unit is set to 0, the attribute becomes RO.

⁴ These communication items, LA, HV and HW are not sent by Acknowledgement ACK from the host computer. Send the polling sequence for these items separately (Example: EOT 00 LA ENQ).

 5 The setting range is from -1999 to +9999 regardless of the position of the decimal point.

Note 1 Set the attribute to R/W (Read and Write) for OUT1 when OUT1 is used as transmission output. Set the attribute to RO (Read only) for OUT1 when OUT1 is not used as transmission output.

Continued on the next page.

(Attribute RO: Read only, R/W: Read and Write)

Name	lden- tifier	Data range	Factory set value	Attribute
Set data lock	LK	Least significant digit: Lock only setting items other than SV and alarms (Data 0: Unlock, 1: Lock) 2nd digit: Lock only alarms (Data 0: Unlock, 1: Lock) 3rd digit: Lock only SV (Data 0: Unlock, 1: Lock) 4th digit: Engineering mode (Data 0: Lock, 1: Unlock) 5th to Most significant digit: Unused ("0"fixed)	0	R/W
EEPROM storage mode ¹	EB	0: Backup mode(Set values are store to the EEPROM)1: Buffer mode(No set values are store to the EEPROM)	0	R/W

¹ The non-volatile memory (EEPROM) has limitations on the number of memory rewrite times. If the buffer mode is selected as an EEPROM storage mode, all of the set values changed are not written to the EEPROM and thus a problem of limitations on the number of memory rewrite times can be solved. When the memory is used to frequently change the set value via communication, select the buffer mode.

When selecting any EEPROM storage mode, take notice of the following.

- If power failure occurs while the buffer mode is selected, the set value returns to the value before the storage mode is selected.
- If the buffer mode is changed to the backup mode, all of the set values at that time are stored to the EEPROM. If necessary to backup the final value of each set item, select the backup mode.
- When the power is turned on, the backup mode is always set.

(Attribute RO: Read only, R/W: Read and Write)

Name	lden- tifier	Data range	Factory set value	Attribute
EEPROM storage status ¹	EM	0: Mismatch 1: Match		RO
Error code ²	ER	0: No error 1: Adjustment error 2: EEPROM error 4: A/D conversion error 8: RAM check error 128: Watchdog timer error		RO

¹ The contents of the buffer memory and those of the EEPROM can be checked.

When data is θ : The contents of the buffer memory do not match with those of the EEPROM.

- As data is being written to the EEPROM in backup mode, do not turn the power off. If turned off, no set values are stored.
- If the set value is changed after the backup mode is changed to the buffer mode, θ is set (mismatch). As the set value changed is not backup, select the backup mode if necessary.

When data is *1*: The contents of the buffer memory match with those of the EEPROM. (Data write to the EEPROM is completed.)

² Any number other than 0 indicates errors (RAM write error, etc.) detected by the controller self-diagnosis function. Please contact RKC sales office or the agent.

Initial setting data

The Initial setting data (Engineering mode) should be set according to the application before setting any parameter related to operation. Once the Initial setting data is set correctly, those data is not necessary to be changed for the same application under normal conditions. If they are changed unnecessarily, it may result in malfunction or failure of the instrument. RKC will not bear any responsibility for malfunction or failure as a result of improper changes in the Initial setting.

The initial setting data items can be set by changing to the engineering mode. Transfer to engineering mode sets "1: Read/Write" with identifier "IO."

Name	lden- tifier	Data range	Factory set value	Attribute
Engineering mode	ΙΟ	Engineering mode setting data items 0: Read only 1: Read/Write	0	R/W
Monitor display configuration	DW	0: PV/SV display 1: Only PV display 2: Only SV display	0	Note 1
Input type selection	XI	 0: Thermocouple K 1: Thermocouple J 2: Thermocouple R 3: Thermocouple S 4: Thermocouple B 5: Thermocouple E 6: Thermocouple N 7: Thermocouple T 8: Thermocouple W5Re/W26Re 9: Thermocouple PLII 10: Thermocouple U 11: Thermocouple L 12: RTD Pt100 13: RTD JPt100 14: Voltage 0 to 5 V DC (Current 0 to 20 mA DC) * 15: Voltage 1 to 5 V DC (Current 4 to 20 mA DC) * 16: Voltage 0 to 10 V DC * For the current input specification, a resistor of 250 Ω must be connected between the input terminals. 	Note 2	Note 1

(Attribute RO: Read only, R/W: Read and Write)

Note 1: Attribute varies depending on the Engineering mode (Identifier: IO) setting.

Note 2: Factory set value varies depending on the instrument specification.

Continued on the next page.

Continued from the previous page.

Name	lden- tifier	Data range	Factory set value	Attribute
Display unit selection	PU	0: °C 1: °F	0	Note 1
Decimal point position	XU	0: No decimal place 1: One decimal place 2: Two decimal places 3: Three decimal places	Note 2	Note 1
Setting limiter [high]	XV	Setting limiter [low] to Maximum value of the selected input range	Temperature input: Maximum value of the selected input range Voltage/current inputs: 100.0	Note 1
Setting limiter [low]	XW	Minimum value of the selected input range to Setting limiter [high]	Temperature input: Minimum value of the selected input range Voltage/current inputs: 0.0	Note 1
Output logic operation selection	LO	See Table 1 (P.30)	Note 2	Note 1
Alarm 1 type selection	XA	 0: Alarm not provided 1: SV high alarm 2: SV low alarm 3: Process high alarm 4: Process low alarm 5: Deviation high alarm 6: Deviation low alarm 7: Deviation high/low alarm 8: Band alarm 	Note 2	Note 1
Alarm 1 hold action	WA	 0: Without alarm hold action 1: Effective when the power is turned on 2: Effective when the power is turned on or the SV is changed 	Note 2	Note 1

Note 1: Attribute varies depending on the Engineering mode (Identifier: IO) setting. Note 2: Factory set value varies depending on the instrument specification.

Name	lden- tifier	Data range	Factory set value	Attribute
Alarm 1 differential gap	НА	0 (0.0) to Span	Temperature input: 2 (2.0) °C [°F] Voltage/current inputs: 0.2 % of span	Note 1
Alarm 1 process abnormality action selection	OA	0: Normal processing 1: Turn the alarm output ON	Alarm 1 not provided: 0 Alarm 1 provided: 1	Note 1
Alarm 1 interlock	QA	0: Without alarm interlock 1: With alarm interlock	0	Note 1
Alarm 1 timer unit	TU	0 to 60 (sec)	0	Note 1
Alarm 2 type selection	XB	 0: Alarm not provided 1: SV high alarm 2: SV low alarm 3: Process high alarm 4: Process low alarm 5: Deviation high alarm 6: Deviation low alarm 7: Deviation high/low alarm 8: Band alarm 	Note 2	Note 1
Alarm 2 hold action	WB	 0: Without alarm hold action 1: Effective when the power is turned on 2: Effective when the power is turned on or the SV is changed 	Note 2	Note 1
Alarm 2 differential gap	НВ	0 (0.0) to Span	Temperature input: 2 (2.0) °C [°F] Voltage/current inputs: 0.2 % of span	Note 1
Alarm 2 process abnormality action selection	OB	0: Normal processing 1: Turn the alarm output ON	Alarm 2 not provided: 0 Alarm 2 provided: 1	Note 1
Alarm 2 interlock	QB	0: Without alarm interlock 1: With alarm interlock	0	Note 1

Note 1: Attribute varies depending on the Engineering mode (Identifier: IO) setting. Note 2: Factory set value varies depending on the instrument specification.

Continued on the next page.

(Attribute RO: Read only, R/W: Read and Write)

Name	lden- tifier	Data range	Factory set value	Attribute
Alarm 2 timer unit	TV	0 to 60 (sec)	0	Note 1
Limit action type selection	XE	0: Limit action [high limit] 1: Limit action [low limit]	0	Note 1
Limit action differential gap	МН	0 (0.0) to Span	Temperature input: 2 (2.0) °C [°F] Voltage/current inputs: 0.2 % of span	Note 1
Limit action hold action	LH	0: Without alarm hold action1: Effective when the power is turned on	0	Note 1
Limit action process abnormality action selection	LE	0: Normal processing 1: Turn the alarm output ON	0	Note 1
Limit action at the time of power ON	LP	0: Limit action output turned OFF at the time of power ON1: Limit action output turned ON at the time of power ON	1	Note 1
<rst key="" operation="" selection<="" td="" time=""><td>RT</td><td>0: Press for one second 1: Press once</td><td>1</td><td>Note 1</td></rst>	RT	0: Press for one second 1: Press once	1	Note 1
Reset action selection	RS	 0: All data is reset with each monitoring screen 1: Each data is reset with each monitoring screen 	0	Note 1
Limit action release signal selection	RO	 0: The limit action release signal reset at the limit action release "0". 1: The limit action release signal reset at the limit action release "1". 	0	Note 1
Integrated operating time display	UT	Display product calculation operating time.		RO
Holding peak value ambient temperature display	Нр	The maximum ambient temperature on the rear terminal board of the instrument is stored and displayed on the set value (SV) display.		RO
ROM version display	VR	Display the version of loading software.		RO

Note 1: Attribute varies depending on the Engineering mode (Identifier: IO) setting.

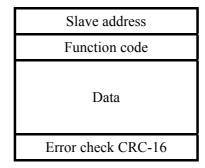
Continued on the next page.

Set value	OUT1	OUT2
1*	Limit output (De-energized) *	OR output of alarm 1 and alarm 2 (Energized) *
2*	Limit output (De-energized)	AND output of alarm 1 and alarm 2 (Energized)
3	Limit output (De-energized)	Alarm 1 output (Energized)
4	Limit output (De-energized)	OR output of alarm 1 and alarm 2 (De-energized)
5	Limit output (De-energized)	AND output of alarm 1 and alarm 2 (De-energized)
6	Limit output (De-energized)	Alarm 1 output (De-energized)
7	Limit output (De-energized)	No output
8	Limit output (Energized)	OR output of alarm 1 and alarm 2 (Energized)
9	Limit output (Energized)	AND output of alarm 1 and alarm 2 (Energized)
10	Limit output (Energized)	Alarm 1 output (Energized)
11	Limit output (Energized)	OR output of alarm 1 and alarm 2 (De-energized)
12	Limit output (Energized)	AND output of alarm 1 and alarm 2 (De-energized)
13	Limit output (Energized)	Alarm 1 output (De-energized)
14	Limit output (Energized)	No output
15*	Transmission output *	Limit output (De-energized) *
16*	Transmission output	Limit output (Energized)

Table 1: Output logic operation selection

* Writing (selecting) when the OUT1 is current output:

• Set the value "1" to the identifier "LO." "15" is written to the identifier "LO."


• Set the value "2" to the identifier "LO." "16" is written to the identifier "LO."

6. MODBUS COMMUNICATION PROTOCOL

The master controls communication between master and slave. A typical message consists of a request (query message) sent from the master followed by an answer (response message) from the slave. When master begins data transmission, a set of data is sent to the slave in a fixed sequence. When it is received, the slave decodes it, takes the necessary action, and returns data to the master.

6.1 Message Format

The message consists of four parts: slave address, function code, data, and error check code which are always transmitted in the same sequence.

Message format

Slave address

The slave address is a number from 1 to 99 manually set at the front key panel of the controller.

For details, see **4.2 Setting the Communication Parameters (P. 7)**.

Although all connected slaves receive the query message sent from the master, only the slave with the slave address coinciding with the query message will accept the message.

Function code

The function codes are the instructions set at the master and sent to the slave describing the action to be executed. The function codes are included when the slave responds to the master.

For details, see 6.2 Function Code (P. 32).

Data

The data to execute the function specified by the function code is sent to the slave and corresponding data returned to the master from the slave.

For details, see 6.6 Message Format (P. 36), 6.7 Data Configuration (P. 39) and 6.8 Communication Data List (P. 41).

Error check

An error checking code (CRC-16: Cyclic Redundancy Check) is used to detect an error in the signal transmission.

For details, see 6.5 Calculating CRC-16 (P. 34).

6.2 Function Code

Function code contents

Function code (Hexadecimal)	Function	Contents
03H	Read holding registers	Measured value (PV), alarm status, etc.
06H	Preset single register	Set value (SV), alarm set value, PV bias, etc. (For each word)
08H	Diagnostics (loopback test)	Diagnostics (loopback test)

Message length of each function (Unit: byte)

Function code	Function	Query message		message Response message	
(Hexadecimal)		Min	Мах	Min	Мах
03H	Read holding registers	8	8	7	255
06H	Preset single register	8	8	8	8
08H	Diagnostics (loopback test)	8	8	8	8

6.3 Communication Mode

Signal transmission between the master and slaves is conducted in Remote Terminal Unit (RTU) mode.

RTU mode

Items	Contents
Data bit length	8 bit (Binary)
Start mark of message	Unused
End mark of message	Unused
Message length	See 6.2 Function Code (P. 32)
Data time interval	24 bit's time or less *
Error check	CRC-16 (Cyclic Redundancy Check)

* The data time intervals in one query message from the master must be 24 bit's time or less. If the data time interval exceeds 24 bit's time, the slave regards the transmission as ended and because the message format is incomplete, the slave does not respond.

6.4 Slave Responses

(1) Normal response

- In the response message of the Read Holding Registers, the slave returns the read out data and the number of data items with the same slave address and function code as the query message.
- In the response message of the Preset Single Resister, the slave returns the same message as the query message.
- In the response message of the Diagnostics (loopback test), the slave returns the same message as the query message.

(2) Defective message response

• If the query message from the master is defective, except for transmission error, the slave returns the error response message without any action.

Slave address
Function code
Error code
Error check CRC-16

Error response message

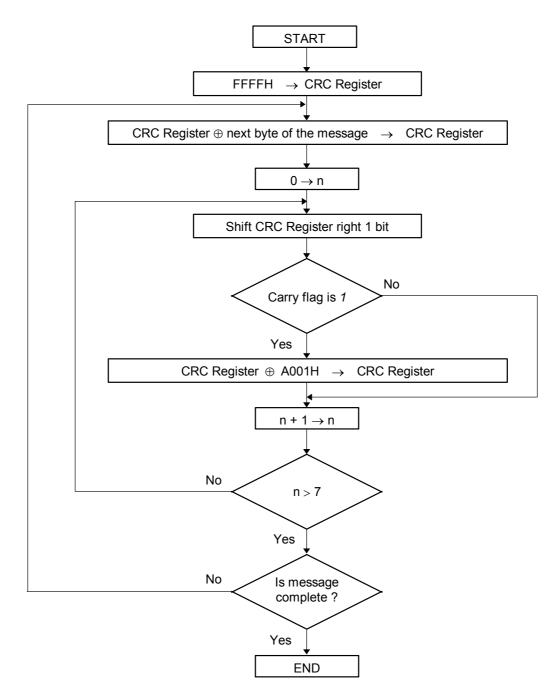
- If the self-diagnostic function of the slave detects an error, the slave will return an error response message to all query messages.
- The function code of each error response message is obtained by adding 80H to the function code of the query message.

Error code	Contents
1	Function code error (Specifying nonexistent function code)
2	When written to read only (RO) data, When any address other than 0000H to 001AH is specified, etc.
3	When the data written exceeds the setting range, When the specified number of data items in the query message exceeds the maximum number of data items available
4	Self-diagnostic error response

(3) No response

The slave ignores the query message and does not respond when:

- The slave address in the query message does not coincide with any slave address settings.
- The CRC code of the master does not coincide with that of the slave.
- Transmission error such as overrun, framing, parity and etc., is found in the query message.
- Data time interval in the query message from the master exceeds 24 bit's time.


6.5 Calculating CRC-16

The Cyclic Redundancy Check (CRC) is a 2 byte (16-bit) error check code. After constructing the data message, not including start, stop, or parity bit, the master calculates a CRC code and appends this to the end of the message. The slave will calculate a CRC code from the received message, and compare it with the CRC code from the master. If they do not coincide, a communication error has occurred and the slave does not respond.

The CRC code is formed in the following sequence:

- 1. Load a 16-bit CRC register with FFFFH.
- 2. *Exclusive OR* (\oplus) the first byte (8 bits) of the message with the CRC register. Return the result to the CRC register.
- 3. Shift the CRC register 1 bit to the right.
- 4. If the carry flag is *1*, *exclusive OR* the CRC register with A001 hexadecimal and return the result to the CRC register. If the carry flag is 0, repeat step 3.
- 5. Repeat step 3 and 4 until there have been 8 shifts.
- 6. Exclusive OR the next byte (8 bits) of the message with the CRC register.
- 7. Repeat step 3 through 6 for all bytes of the message (except the CRC).
- **8.** The CRC register contains the 2 byte CRC error code. When they are appended to the message, the low-order byte is appended first, followed by the high-order byte.

■ The flow chart of CRC-16

The \oplus symbol indicates an *exclusive OR* operation. The symbol for the number of data bits is *n*.

6.6 Message Format

6.6.1 Read holding registers [03H]

The query message specifies the starting register address and quantity of registers to be read. The contents of the holding registers are entered in the response message as data, divided into two parts: the high-order 8 bits and the low-order 8 bits, arranged in the order of the register numbers.

Example: The contents of the three holding registers from 0000H to 0002H are the read out from slave address 2.

Query message

Slave address		02H
Function code		03H
Starting number	High	00H
	Low	00H
Quantity	High	00H
-	Low	03H
CRC-16	High	05H
	Low	F8H

First holding register address

The setting must be between 1 (0001H) and 125 (007DH).

Normal response message

Slave address		02H	
Function code		03H	
Number of data		06H	→ N
First holding	High	00H	
register contents	Low	00H	
Next holding	High	00H	
register contents	Low	00H	
Next holding	High	00H	
register contents	Low	63H	
CRC-16	High	75H	
	Low	ACH	

► Number of holding registers × 2

Error response message

Slave address		02H
80H + Function code		83H
Error code		03H
CRC-16	High	F1H
	Low	31H

6.6.2 Preset single register [06H]

The query message specifies data to be written into the designated holding register. The write data is arranged in the query message with high-order 8 bits first and low-order 8 bits next. Only R/W holding registers can be specified.

Example: Data is written into the holding register 0010H of slave address 1.

Query message

Slave address		01H
Function code		06H
Holding register	High	00H
number	Low	10H
Write data	High	01H
	Low	02H
CRC-16	High	08H
	Low	5EH

Any data within the range

Normal response message

Slave address		01H
Function code		06H
Holding register	Holding register High	
number	Low	10H
Write data	High	01H
	Low	02H
CRC-16	High	08H
	Low	5EH

Error response message

Slave address		01H
80H + Function code		86H
Error code		02H
CRC-16	High	СЗН
	Low	A1H

Contents will be the same as query message data.

6.6.3 Diagnostics (loopback test) [08H]

The master's query message will be returned as the response message from the slave. This function checks the communication system between the master and slave.

Example: Loopback test for slave address 1

Query message

, , ,			
Slave address		01H	
Function code		08H	_
Test code	High	00H	J
	Low	00H	J
Data	High	1FH	N
	Low	34H	ſ
CRC-16	High	E9H	
	Low	ECH	

Test code must be set to 00.

Any pertinent data

Normal response message

Slave address	01H			
Function code	08H			
Test code	Test code High			
	Low	00H		
Data	High	1FH		
	Low	34H		
CRC-16	High	E9H		
	Low	ECH		

Error response message

Slave address	01H	
80H + Function code	88H	
Error code	03H	
CRC-16	06H	
	Low	01H

Contents will be the same as query message data.

6.7 Data Configuration

6.7.1 Data range

The numeric range of data used in Modbus protocol is 0000H to FFFFH. Only the set value within the setting range is effective.

FFFFH represents -1.

Data processing with decimal points

Data with decimal points

• Data with three decimal places

The Modbus protocol does not recognize data with decimal points during communication. PV ratio

Example: When PV ratio is 0.555, 0.555 is processed as 555, 555 = 022BH

PV ratio	High	02H
	Low	2BH

Data without decimal points

Limit action monitor	Decimal point position
Burnout	Output logic operation selection
Alarm 1 status	Alarm 1 type selection
Alarm 2 status	Alarm 1 hold action
EXCD time (min)	Alarm 1 process abnormality action selection
EXCD time (sec)	Alarm 1 interlock
Limit action release	Alarm 1 timer unit
Alarm interlock release	Alarm 2 type selection
Alarm 1 timer	Alarm 2 hold action
Alarm 2 timer	Alarm 2 process abnormality action selection
Digital filter	Alarm 2 interlock
Analog output selection	Alarm 2 timer unit
Set data lock	Limit action type selection
EEPROM storage mode	Limit action hold action
EEPROM storage status	Limit action process abnormality action selection
Engineering mode	Limit action at the time of power ON
Monitor display configuration	<rst key="" operation="" selection<="" td="" time=""></rst>
Input type selection	Reset action selection
Display unit selection	Limit action release signal selection

Example: When Alarm 1 timer is 50 seconds; 50 is processed as 50, 50 = 0032H

Alarm 1 timer	High	00H
	Low	32H

Data whose decimal point's presence and/or position depends on input range

The position of the decimal point changes depending on the input range type because the Modbus protocol does not recognize data with decimal points during communication.

The following data can have one of three decimal point positions:

- No decimal point
- One decimal place
- Two decimal place
 - For details, see 7. INPUT RANGE TABLES (P. 49).

Measured value (PV)	Analog output scale high
Peak hold value monitor	Analog output scale low
Bottom hold value monitor	Setting limiter [high]
Set value (SV)	Setting limiter [low]
Alarm 1 set value	Alarm 1 differential gap
Alarm 2 set value	Alarm 2 differential gap
PV bias	Limit action differential gap

Example: When the temperature set value is -20.0 °C; -20.0 is processed as -200,

-200 = 0000H - 00C8H = FF38H

Set value (SV)	High	FFH
	Low	38H

6.7.2 Data processing precautions

- For 03H (read holding register), an error response message is returned when the start address is larger than 1AH.
- For 06H (preset single register), an error message is returned when the write address is larger than 1AH.
- Read data of unused channel and undefined address is θ .
- Any attempt to write to an unused channel is not processed as an error. Data can not be written into an unused channel.
- If data range or address error occurs during data writing, the data written before error is in effect.

6.8 Communication Data List

The communication data list summarizes data addresses (holding resister numbers), names, descriptions, factory set values and attributes.

				(Attribute RO: Read only, R/W: I	Read and Write)
Name		ister ress Decimal	Attrib- ute	Data range	Factory set value
Measured value (PV)	0000	0	RO	Within input range	
Limit action monitor	0001	1	RO	0: Normal 1: Limit output ON 2: EXCD status	
Burnout	0002	2	RO	0: OFF 1: ON	
Alarm 1 status	0003	3	RO	0: OFF	
Alarm 2 status	0004	4	RO	1: ON	
Peak hold value monitor	0005	5	RO	Setting limiter [low] to Setting limiter [high]	
Bottom hold value monitor	0006	6	RO	Setting limiter [low] to Setting limiter [high]	
EXCD time (min)	0007	7	RO	0 to 999 (0 to 999 min)	
EXCD time (sec)	0008	8	RO	0 to 59 (0 to 59 sec)	
Limit action release	0009	9	R/W	Transfer of limit action release signal "0" setting: 0: Limit action release (always "1") "1" setting: 1: Limit action release (always "0")	1
Alarm interlock release	000A	10	R/W ¹	0: Interlock release (always "1")	1
Set value (SV)	000B	11	R/W	Setting limiter [low] to Setting limiter [high]	Temperature input: 0 or 0.0 Voltage/current inputs: 0
Alarm 1 set value	000C	12	R/W ²	Process alarm, SV alarm: Same as input range Deviation alarm: –Span to +Span However, within –1999 to +9999 digits	Temperature input: 50 or 50.0 Voltage/current inputs: 5.0

¹ If Alarm 1, Alarm 2, Alarm 1 interlock, or Alarm 2 interlock are not provided, the attribute becomes RO.

² If Alarm 1 is not provided, the attribute becomes RO.

Name	add	ister ress	Attrib-	Data range	Factory set
	Hexa- decimal	Decimal	ute		value
Alarm 1 timer	000D	13	R/W ¹	0 to 9999	
Alarm 2 set value	000E	14	R/W ²	Process alarm, SV alarm: Same as input range Deviation alarm: –Span to +Span However, within –1999 to +9999 digits	Temperature input: 50 or 50.0 Voltage/current inputs: 5.0
Alarm 2 timer	000F	15	R/W ³	0 to 9999	
PV bias	0010	16	R/W	-Span to +Span However, within -1999 to +9999 digits	Temperature input: 0 or 0.0 Voltage/current inputs: 0.0
PV ratio	0011	17	R/W	0.500 to 1.500	1.000
Digital filter	0012	18	R/W	0 to 100 seconds (0: OFF)	0
Analog output selection	0013	19	Note 1	0: Measured value (PV) 1: Set value (SV) 2: Deviation	0
Analog output scale high ⁴	0014	20		Measured value (PV), Set value (SV): Same as input range Deviation: –Span to +Span	Temperature input: Input range (high limit) Voltage/current inputs: 100.0
Analog output scale low ⁴	0015	21			Temperature input: Input range (low limit) Voltage/current inputs: 0.0

(**1****1** ...

¹ If Alarm 1 is not provided or Alarm 1 timer unit is set to 0, the attribute becomes RO.

 2 If Alarm 2 is not provided, the attribute becomes RO.

³ If Alarm 2 is not provided or Alarm 2 timer unit is set to 0, the attribute becomes RO.

⁴ The setting range is from –1999 to +9999 regardless of the position of the decimal point.

Note 1 Set the attribute to R/W (Read and Write) for OUT1 when OUT1 is used as transmission output. Set the attribute to RO (Read only) for OUT1 when OUT1 is not used as transmission output. Continued on the next page.

1 1 1 1 . .

				(Attribute RO: Read only, R/W: R	RO: Read only, R/W: Read and Write)	
Name	add	ister ress Decimal	Attrib- ute	Data range	Factory set value	
Set data lock	0016	22	R/W	 Bit data b0: Lock only setting items other than SV and alarms (Data 0: Unlock, 1: Lock) b1: Lock only alarms (Data 0: Unlock, 1: Lock) b2: Lock only SV (Data 0: Unlock, 1: Lock) b3: Engineering mode (Data 0: Lock, 1: Unlock) b4, b5: Unused ("0" fixed) [Decimal number: 0 to 15] 	0	
EEPROM storage mode ¹	0017	23	R/W	0: Backup mode (Set values are store to the EEPROM)1: Buffer mode (No set values are store to the EEPROM)	0	
EEPROM storage status ²	0018	24	RO	0: Mismatch 1: Match		
Unused	0019 : 002F	25 : 47				

¹ The non-volatile memory (EEPROM) has limitations on the number of memory rewrite times. If the buffer mode is selected as an EEPROM storage mode, all of the set values changed are not written to the EEPROM and thus a problem of limitations on the number of memory rewrite times can be solved. When the memory is used to frequently change the set value via communication, select the buffer mode.

When selecting any EEPROM storage mode, take notice of the following.

- If power failure occurs while the buffer mode is selected, the set value returns to the value before the storage mode is selected.
- If the buffer mode is changed to the backup mode, all of the set values at that time are stored to the EEPROM. If necessary to backup the final value of each set item, select the backup mode.
- When the power is turned on, the backup mode is always set.

 2 The contents of the buffer memory and those of the EEPROM can be checked.

- When data is θ : The contents of the buffer memory do not match with those of the EEPROM.
 - As data is being written to the EEPROM in backup mode, do not turn the power off. If turned off, no set values are stored.
 - If the set value is changed after the backup mode is changed to the buffer mode, 0 is set (mismatch). As the set value changed is not backup, select the backup mode if necessary.
- When data is *1*: The contents of the buffer memory match with those of the EEPROM. (Data write to the EEPROM is completed.)

Initial setting data

The Initial setting data (Engineering mode) should be set according to the application before setting any parameter related to operation. Once the Initial setting data is set correctly, those data is not necessary to be changed for the same application under normal conditions. If they are changed unnecessarily, it may result in malfunction or failure of the instrument. RKC will not bear any responsibility for malfunction or failure as a result of improper changes in the Initial setting.

The initial setting data items can be set by changing to the engineering mode. Transfer to engineering mode sets "1: Read/Write" with resister address "0030H."

Name	add Hexa-	ister ress Decimal	Attrib- ute	Data range	Factory set value
Engineering mode	decimal 0030	48	R/W	Engineering mode setting data items 0: Read only 1: Read/Write	0
Monitor display configuration	0031	49	Note 1	0: PV/SV display 1: Only PV display 2: Only SV display	0
Input type selection	0032	50	Note 1	 0: Thermocouple K 1: Thermocouple J 2: Thermocouple R 3: Thermocouple S 4: Thermocouple B 5: Thermocouple E 6: Thermocouple N 7: Thermocouple V5Re/W26Re 9: Thermocouple W5Re/W26Re 9: Thermocouple PLII 10: Thermocouple PLII 10: Thermocouple L 12: RTD Pt100 13: RTD JPt100 14: Voltage 0 to 5 V DC (Current 0 to 20 mA DC) * 15: Voltage 1 to 5 V DC (Current 4 to 20 mA DC) * 16: Voltage 0 to 10 V DC * For the current input specification, a resistor of 250 Ω must be connected between the input terminals. 	Note 2

(Attribute RO: Read only, R/W: Read and Write)

Note 1: Attribute varies depending on the Engineering mode (Resister address: 0030H) setting. Note 2: Factory set value varies depending on the instrument specification.

				(Attribute RO: Read only, R/W: 1	Read and Write)	
Name	add	ister ress Decimal	Attrib- ute	Data range	Factory set value	
Display unit selection	0033	51	Note 1	0: °C 1: °F	0	
Decimal point position	0034	52	Note 1	0: No decimal place 1: One decimal place 2: Two decimal places 3: Three decimal places	Note 2	
Setting limiter [high]	0035	53	Note 1	Setting limiter [low] to Maximum value of the selected input range	Temperature input: Maximum value of the selected input range Voltage/current inputs: 100.0	
Setting limiter [low]	0036	54	Note 1	Minimum value of the selected input range to Setting limiter [high]	Temperature input: Minimum value of the selected input range Voltage/current inputs: 0.0	
Output logic operation selection	0037	55	Note 1	See Table 1 (P.48)	Note 2	
Alarm 1 type selection	0038	56	Note 1	 0: Alarm not provided 1: SV high alarm 2: SV low alarm 3: Process high alarm 4: Process low alarm 5: Deviation high alarm 6: Deviation low alarm 7: Deviation high/low alarm 8: Band alarm 	Note 2	
Alarm 1 hold action	0039	57	Note 1	 0: Without alarm hold action 1: Effective when the power is turned on 2: Effective when the power is turned on or the SV is changed 	Note 2	

Note 1: Attribute varies depending on the Engineering mode (Resister address: 0030H) setting. Note 2: Factory set value varies depending on the instrument specification.

	Pac	ictor		(Attribute RO: Read only, R/W:	······································
Name	add	ister ress Decimal	Attrib- ute	Data range	Factory set value
Alarm 1 differential gap	003A	58	Note 1	0 (0.0) to Span	Temperature input: 2 (2.0) °C [°F] Voltage/current
					inputs: 0.2 % of span
Alarm 1 process abnormality action selection	003B	59	Note 1	0: Normal processing 1: Turn the alarm output ON	Alarm 1 not provided: 0 Alarm 1 provided: 1
Alarm 1 interlock	003C	60	Note 1	0: Without alarm interlock 1: With alarm interlock	0
Alarm 1 timer unit	003D	61	Note 1	0 to 60 (sec)	0
Alarm 2 type selection	003E	62	Note 1	 0: Alarm not provided 1: SV high alarm 2: SV low alarm 3: Process high alarm 4: Process low alarm 5: Deviation high alarm 6: Deviation low alarm 7: Deviation high/low alarm 8: Band alarm 	Note 2
Alarm 2 hold action	003F	63	Note 1	 0: Without alarm hold action 1: Effective when the power is turned on 2: Effective when the power is turned on or the SV is changed 	Note 2
Alarm 2 differential gap	0040	64	Note 1	0 (0.0) to Span	Temperature input: 2 (2.0) °C [°F] Voltage/current inputs: 0.2 % of span
Alarm 2 process abnormality action selection	0041	65	Note 1	0: Normal processing 1: Turn the alarm output ON	Alarm 2 not provided: 0 Alarm 2 provided: 1
Alarm 2 interlock	0042	66	Note 1	0: Without alarm interlock 1: With alarm interlock	0

Note 1: Attribute varies depending on the Engineering mode (Resister address: 0030H) setting. Note 2: Factory set value varies depending on the instrument specification.

(Attribute RO: Read only, R/W: Read and Write)

				(Attribute KO: Kead only, K/W.)	,	
Name Resister Address			Attrib- Data range		Factory set value	
Alarm 2 timer unit	decimal 0043	67	Note 1	0 to 60 (sec)	0	
		-		· · · ·	-	
Limit action type selection	0044	68	Note 1	0: Limit action [high limit] 1: Limit action [low limit]	0	
Limit action differential gap	0045	69	Note 1	0 (0.0) to Span	Temperature input: 2 (2.0) °C [°F]	
					Voltage/current inputs: 0.2 % of span	
Limit action hold action	0046	70	Note 1	0: Without alarm hold action1: Effective when the power is turned on	0	
Limit action process abnormality action selection	0047	71	Note 1	0: Normal processing1: Turn the alarm output ON	0	
Limit action at the time of power ON	0048	72	Note 1	 0: Limit action output turned OFF at the time of power ON 1: Limit action output turned ON at the time of power ON 	1	
<rst key<br="">operation time selection</rst>	0049	73	Note 1	0: Press for one second 1: Press once	1	
Reset action selection	004A	74	Note 1	0: All data is reset with each monitoring screen1: Each data is reset with each monitoring screen	0	
Limit action release signal selection	004B	75	Note 1	0: The limit action release signal reset at the limit action release "0".1: The limit action release signal reset at the limit action release "1".	0	

Note 1: Attribute varies depending on the Engineering mode (Resister address: 0030H) setting.

Set value	OUT1	OUT2
1*	Limit output (De-energized) *	OR output of alarm 1 and alarm 2 (Energized) *
2*	Limit output (De-energized)	AND output of alarm 1 and alarm 2 (Energized)
3	Limit output (De-energized)	Alarm 1 output (Energized)
4	Limit output (De-energized)	OR output of alarm 1 and alarm 2 (De-energized)
5	Limit output (De-energized)	AND output of alarm 1 and alarm 2 (De-energized)
6	Limit output (De-energized)	Alarm 1 output (De-energized)
7	Limit output (De-energized)	No output
8	Limit output (Energized)	OR output of alarm 1 and alarm 2 (Energized)
9	Limit output (Energized)	AND output of alarm 1 and alarm 2 (Energized)
10	Limit output (Energized)	Alarm 1 output (Energized)
11	Limit output (Energized)	OR output of alarm 1 and alarm 2 (De-energized)
12	Limit output (Energized)	AND output of alarm 1 and alarm 2 (De-energized)
13	Limit output (Energized)	Alarm 1 output (De-energized)
14	Limit output (Energized)	No output
15*	Transmission output *	Limit output (De-energized) *
16*	Transmission output	Limit output (Energized)

* Writing (selecting) when the OUT1 is current output:

• Set the value "1" to the resister address "0037H." "15" is written to the resister address "0037H."

• Set the value "2" to the resister address "0037H." "16" is written to the resister address "0037H."

7. INPUT RANGE TABLES

Input Range Table 1

Input type		Input range	Co	Code	
			Input	Range	
		0 to 200 °C	K	01	
		0 to 400 °C	K	02	
		0 to 600 °C	K	03	
		0 to 800 °C	K	04	
		0 to 1000 °C	K	05	
		0 to 1200 °C	K	06	
		0 to 1372 °C	K	07	
		−199.9 to +300.0 °C	K	08	
		0.0 to 400.0 °C	K	09	
		0.0 to 800.0 °C	K	10	
	K	0 to 100 °C	K	13	
		0 to 300 °C	K	14	
		0 to 450 °C	K	17	
		0 to 500 °C	K	20	
		0.0 to 200.0 °C	K	29	
		0.0 to 600.0 °C	K	37	
Thermocouple		−199.9 to +800.0 °C	K	38	
		0 to 800 °F	K	A1	
		0 to 1600 °F	K	A2	
		0 to 2502 °F	K	A3	
		0.0 to 800.0 °F	K	A4	
		20 to 70 °F	K	A9	
		-199.9 to +999.9 °F	K	B2	
		0 to 200 °C	J	01	
		0 to 400 °C	J	02	
		0 to 600 °C	J	03	
		0 to 800 °C	J	04	
		0 to 1000 °C	J	05	
	J	0 to 1200 °C	J	06	
		-199.9 to +300.0 °C	J	07	
		0.0 to 400.0 °C	J	08	
		0.0 to 800.0 °C	J	09	
		0 to 450 °C	J	10	
		0.0 to 200.0 °C	J	22	
		0.0 to 600.0 °C	J	23	
		-199.9 to +600.0 °C	J	30	

Input type		Input range	Co	Code	
			Input	Range	
		0 to 800 °F	J	A1	
		0 to 1600 °F	J	A2	
		0 to 2192 °F	J	A3	
	J	0 to 400 °F	J	A6	
		-199.9 to +999.9 °F	J	A9	
		0.0 to 800.0 °F	J	B6	
		0 to 1600 °C ¹	R	01	
		0 to 1769 °C ¹	R	02	
	R	0 to 1350 °C ¹	R	04	
		0 to 3200 °F ¹	R	A1	
		0 to 3216 °F ¹	R	A2	
		0 to 1600 °C ¹	S	01	
	S	0 to 1769 °C ¹	S	02	
		0 to 3200 °F ¹	S	A1	
		0 to 3216 °F ¹	S	A2	
		400 to 1800 °C	В	01	
Thermocouple	В	0 to 1820 °C ¹	В	02	
		800 to 3200 °F	В	A1	
		0 to 3308 °F ¹	В	A2	
		0 to 800 °C	Е	01	
	E	0 to 1000 °C	Е	02	
		0 to 1600 °F	Е	A1	
		0 to 1832 °F	Е	A2	
		0 to 1200 °C	Ν	01	
		0 to 1300 °C	N	02	
	Ν	0.0 to 800.0 °C	N	06	
		0 to 2300 °F	Ν	A1	
		0 to 2372 °F	N	A2	
		0.0 to 999.9 °F	Ν	A5	
Γ		-199.9 to $+400.0$ °C 2	Т	01	
		-199.9 to $+100.0$ °C 2	Т	02	
		-100.0 to +200.0 °C	Т	03	
		0.0 to 350.0 °C	Т	04	
	Т	-199.9 to $+752.0$ °F 2	Т	A1	
		-100.0 to +200.0 °F	Т	A2	
		-100.0 to +400.0 °F	Т	A3	
		0.0 to 450.0 °F	Т	A4	
		0.0 to 752.0 °F	Т	A5	

¹ Accuracy is not guaranteed between 0 to 399 °C (0 to 751 °F) ² Accuracy is not guaranteed between -199.9 to -100.0 °C (-199.9 to -148.0 °F)

Input type		Input range	Co	ode
			Input	Range
		0 to 2000 °C	W	01
	W5Re/W26Re	0 to 2320 °C	W	02
		0 to 4000 °F	W	A1
		0 to 1300 °C	Α	01
		0 to 1390 °C	А	02
	PL II	0 to 1200 °C	А	03
		0 to 2400 °F	А	A1
		0 to 2534 °F	А	A2
Thermocouple		-199.9 to +600.0 °C *	U	01
		-199.9 to +100.0 °C *	U	02
		0.0 to 400.0 °C	U	03
	U	-199.9 to +999.9 °F *	U	A1
		-100.0 to +200.0 °F	U	A2
		0.0 to 999.9 °F	U	A3
	L	0 to 400 °C	L	01
		0 to 800 °C	L	02
		0 to 800 °F	L	A1
		0 to 1600 °F	L	A2
		−199.9 to +649.0 °C	D	01
		-199.9 to +200.0 °C	D	02
		-100.0 to +50.0 °C	D	03
		−100.0 to +100.0 °C	D	04
		-100.0 to +200.0 °C	D	05
		0.0 to 50.0 °C	D	06
		0.0 to 100.0 °C	D	07
		0.0 to 200.0 °C	D	08
		0.0 to 300.0 °C	D	09
RTD	Pt100	0.0 to 500.0 °C	D	10
		−199.9 to +999.9 °F	D	A1
		-199.9 to +400.0 °F	D	A2
		-199.9 to +200.0 °F	D	A3
		-100.0 to +100.0 °F	D	A4
		-100.0 to +300.0 °F	D	A5
		0.0 to 100.0 °F	D	A6
		0.0 to 200.0 °F	D	A7
		0.0 to 400.0 °F	D	A8
		0.0 to 500.0 °F	D	A9

* Accuracy is not guaranteed between -199.9 to -100.0 °C (-199.9 to -148.0 °F)

Input type		Input range	Co	Code	
			Input	Range	
		-199.9 to +649.0 °C	Р	01	
		-199.9 to +200.0 °C	Р	02	
		-100.0 to +50.0 °C	Р	03	
		-100.0 to +100.0 °C	Р	04	
RTD	JPt100	-100.0 to +200.0 °C	Р	05	
		0.0 to 50.0 °C	Р	06	
		0.0 to 100.0 °C	Р	07	
		0.0 to 200.0 °C	Р	08	
		0.0 to 300.0 °C	Р	09	
		0.0 to 500.0 °C	Р	10	

Input Range Table 2

Inpu	ut type	Input range	Code	
			Input	Range
	0 to 5 V DC		4	01
Voltage	0 to 10 V DC		5	01
	1 to 5 V DC	0. 0 to 100.0 %	6	01
Current	0 to 20 mA DC		7	01
	4 to 20 mA DC		8	01

For the current input specification, a resistor of 250 Ω must be connected between the input terminals.

8. TROUBLESHOOTING

- To prevent electric shock or instrument failure, always turn off the system power before replacing the instrument.
- To prevent electric shock or instrument failure, always turn off the power before mounting or removing the instrument.
- To prevent electric shock or instrument failure, do not turn on the power until all the wiring is completed.
- To prevent electric shock or instrument failure, do not touch the inside of the instrument.
- All wiring must be performed by authorized personnel with electrical experience in this type of work.

CAUTION

All wiring must be completed before power is turned on to prevent electric shock, instrument failure, or incorrect action.

The power must be turned off before repairing work for input break and output failure including replacement of sensor, contactor or SSR, and all wiring must be completed before power is turned on again.

This section lists some of the main causes and solutions for communication problems.

If you can not solve a problem, please contact RKC sales office or the agent, on confirming the type name and specifications of the product.

Problem	Probable cause	Solution
No response	Wrong connection, no connection or disconnection of the communication cable	Confirm the connection method or condition and connect correctly
	Breakage, wrong wiring, or imperfect contact of the communication cable	Confirm the wiring or connector and repair or replace the wrong one
	Mismatch of the setting data of communication speed and data bit configuration with those of the host	Confirm the settings and set them correctly
	Wrong address setting	

RKC communication

Continued from the previous page.

Problem	Probable cause	Solution
No response	Error in the data format	Reexamine the communication program
	Transmission line is not set to the receive state after data send (for RS-485)	
EOT return	The specified identifier is invalid	Confirm the identifier is correct or that with the correct function is specified. Otherwise correct it
	Error in the data format	Reexamine the communication program
NAK return	Error occurs on the line (parity bit error, framing error, etc.)	Confirm the cause of error, and solve the problem appropriately. (Confirm the transmitting data, and resend data)
	BCC error	
	The data exceeds the setting range	Confirm the setting range and transmit correct data
	The specified identifier is invalid	Confirm the identifier is correct or that with the correct function is specified. Otherwise correct it

Modbus

Problem	Probable cause	Solution	
No response	Wrong connection , no connection or disconnection of the communication cable	Confirm the connection method or condition and connect correctly	
	Breakage, wrong wiring, or imperfect contact of the communication cable	Confirm the wiring or connector and repair or replace the wrong one	
	Mismatch of the setting data of communication speed and data bit configuration with those of the host	Confirm the settings and set them correctly	
	Wrong address setting		
	A transmission error (overrun error, framing error, parity error or CRC-16 error) is found in the query message	Re-transmit after time-out occurs or verify communication program	
	The time interval between adjacent data in the query message is too long, exceeding 24 bit's time		
Error code 1	Function cod error (Specifying nonexistent function code)	Confirm the function code	
Error code 2	When written to read only (RO) data, When any address other than 0000H to 001AH is specified, etc.	Confirm the address of holding register	
Error code 3	When the data written exceeds the setting range, When the specified number of data items in the query message exceeds the maximum number of data items available	Confirm the setting data	
Error code 4	Self-diagnostic error	Turn off the power to the instrument. If the same error occurs when the power is turned back on, please contact RKC sales office or the agent.	

9. ASCII 7-BIT CODE TABLE

	This table is only for use with RKC communication.
--	--

							i			i	i	i	
				\rightarrow	b7	0	0	0	0	1	1	1	1
				\rightarrow	b6	0	0	1	1	0	0	1	1
				\rightarrow	b5	0	1	0	1	0	1	0	1
b5 to b7	b4	b3	b2	b1	\nearrow	0	1	2	3	4	5	6	7
	0	0	0	0	0	NUL	DLE	SP	0	@	Р	د	р
	0	0	0	1	1	SOH	DC1	!	1	А	Q	а	q
	0	0	1	0	2	STX	DC2	"	2	В	R	b	r
		1	1	1	3	ETX	DC3	#	3	С	S	c	S
	0	1	0	0	4	EOT	DC4	\$	4	D	Т	d	t
	0	1	0	1	5	ENQ	NAK	%	5	Е	U	e	u
	0	1	1	0	6	ACK	SYM	&	6	F	V	f	v
	0	1	1	1	7	BEL	ETB	,	7	G	W	g	W
	1	0	0	0	8	BS	CAN	(8	Н	Х	h	х
	1	0	0	1	9	HT	EM)	9	Ι	Y	i	у
		1	1	1	Α	LF	SUB	*	•••	J	Ζ	j	Z
		•	1	1	В	VT	ESC	+	;	K	[k	{
	1	1	0	0	С	FF	FS	,	<	L	¥	1	
	1	1	0	1	D	CR	GS	-	=	М]	m	}
	1	1	1	0	Е	SO	RS	•	>	N	^	n	~
	1	1	1	1	F	SI	US	/	?	0	_	0	DEL

RKC INSTRUMENT INC.

HEADQUARTERS: 16-6, KUGAHARA 5-CHOME, OHTA-KU TOKYO 146-8515 JAPAN PHONE: 03-3751-9799 (+81 3 3751 9799)

> E-mail: info@rkcinst.co.jp FAX: 03-3751-8585 (+81 3 3751 8585)