Density is the measurement of a material's weight to volume. Lower value = less weight and fast heating.

Heater Sheath Material Thermal and Physical Properties*

<table>
<thead>
<tr>
<th>Material</th>
<th>Thermal Conductivity (W/m·K)</th>
<th>Coefficient of Thermal Expansion (µin/°C)</th>
<th>Heat Capacity (W/g)</th>
<th>Density (g/cm³)</th>
<th>Vicker Hardness (KPa)</th>
<th>Young's Modulus of Elasticity (GPa)</th>
<th>Flexural Strength (MPa)</th>
<th>Dielectric Strength (V/m @ 25°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum Nitride AlN</td>
<td>180</td>
<td>4.3</td>
<td>0.78</td>
<td>3.26</td>
<td>11.2</td>
<td>322</td>
<td>350</td>
<td>16 x 10⁶</td>
</tr>
<tr>
<td>96% Alumina Al₂O₃</td>
<td>30</td>
<td>10.2</td>
<td>0.88</td>
<td>3.75</td>
<td>15.7</td>
<td>370</td>
<td>400</td>
<td>18.1 x 10⁹</td>
</tr>
<tr>
<td>Silicon Nitride Si₃N₄</td>
<td>40</td>
<td>3.2</td>
<td>0.71</td>
<td>3.25</td>
<td>13.9</td>
<td>290</td>
<td>610</td>
<td>13 x 10⁹</td>
</tr>
<tr>
<td>Aluminum Al</td>
<td>180</td>
<td>23.6</td>
<td>0.9</td>
<td>2.7</td>
<td>0.11</td>
<td>69</td>
<td>276</td>
<td>N/A</td>
</tr>
<tr>
<td>Stainless Steel 316</td>
<td>12</td>
<td>5.8</td>
<td>0.5</td>
<td>8</td>
<td>1.26</td>
<td>180</td>
<td>520</td>
<td>N/A</td>
</tr>
</tbody>
</table>

* Property values reflect typical performance and can vary by adding alloys and / or process procedures.

Advanced Ceramic Heater Thermal Solutions

Rapid Fire™ Aluminum Nitride (AlN) Heaters

Durex Industries’ Rapid Fire aluminum nitride (AlN) ceramic heater solutions combine the thermal conductivity of aluminum and dielectric strength of specialty ceramics with physical properties similar to stainless steel. Additionally, a tungsten (W) RTD Sensor is integrated into the multi-layer heater construction to provide maximum control of this high watt density heater. New levels of machine design and thermal performance can be achieved through the excellent thermal, dielectric and physical properties of AlN heaters.

Ceramic heater technologies offer significant advantages over metal based sheath heaters that have limitations in thermal performance or material compatibility. Durex’ ceramic heaters can operate in atmospheric and vacuum environments up to 1000°C (1832°F). With its excellent thermal conductivity, AlN heaters can be designed with a multi-layer construction that can deliver up to 2000 W/in² (310 W/cm²). With chemical resistance to most acidic and alkaline solutions, these compact robust heaters are an ideal solution for demanding thermal applications. Ceramic heaters can be custom designed to optimize thermal performance for instrumentation and equipment applications.

Rapid Fire AlN Advantages

- Thermal conductivity equivalent to aluminum for fast and uniform thermal response
- Watt density higher than any metal or ceramic heater technology for concentrated heat in a small area
- Integrated RTD sensor for optimum heater temperature control
- Dielectric strength eliminates need for magnesium oxide insulation (MgO) layer used in metal heaters
- Heater temperature up to 1000°C (1832°F) for high temperature applications
- Low porosity non-stick surface reduces potential for process contamination
- Chemically inert to most acid and alkaline environments
- High mechanical strength, hardness and wear resistance for industrial applications
Multi Layer Ceramic Heater Design and Manufacturing

Multi-layer AIN heater design and manufacturing processes extend the capability and functionality of AIN thermal solutions. Starting with green state (power) ceramic materials, each layer is formed and pressed to the required dimensions. Metallic heater and sensor layers are sandwiched and pressed between the ceramic layers. The entire assembly is then sintered in a high temperature furnace to create a monolithic assembly. Layers may include combination of heater circuits, RTD sensor elements, ground planes, radio frequency (RF) grids, metallic and ceramic flow channels.

AIN heaters are used in applications where low thermal expansion and/or high thermal conductivity are required. When combined with internal chemically-bonded metallic conductors, these components may be used in high power electronic devices and rapid thermal cycling processes. Very high power densities can be realized by designing a solution with metallic structures for mounting and heat removal.

Cylindrical 3D AIN Heaters

Precision manufacturing processes and machining capabilities allow for unique 3D designs such as a cylindrical (tube) heater. Cylindrical heater applications include gas and liquid heating in instrumentation such as gas chromatographs, mass spectrometers, and medical devices. Cylindrical heaters can be designed for process temperatures in excess of 600°C (1112°F) with watt densities up to 1000 W/in² (155 W/cm²). With design flexibility to distribute wattage and vary the length as well as inside and outside diameter, this heater can be customized to optimize performance in the application.

Industries and Applications

High watt density, low power consumption, fast temperature ramp rates, and up to 1000°C (1832°F) temperatures make AIN heaters an excellent thermal solution. Whether the application is for a high temperature environmental instrumentation application in a power plant or for burning test samples, AIN heaters are a robust solution that can provide the reliability required in the application.

Advanced Ceramic Heaters

are small in size but Mighty in Power!
Multi-layer AlN heater design and manufacturing processes extend the capability and functionality of AlN thermal solutions. Starting with green state (power) ceramic materials, each layer is formed and pressed to the required dimensions. Metallic heater and sensor layers are sandwiched and pressed between the ceramic layers. The entire assembly is then sintered in a high temperature furnace to create a monolithic assembly. Layers may include combination of heater circuits, RTD sensor elements, ground planes, radio frequency (RF) grids, metallic and ceramic flow channels.

AlN heaters are used in applications where low thermal expansion and/or high thermal conductivity are required. When combined with internal chemically-bonded metallic conductors, these components may be used in high power electronic devices and rapid thermal cycling processes. Very high power densities can be realized by designing a solution with metallic structures for mounting and heat removal.

Cylindrical 3D AlN Heaters
Precision manufacturing processes and machining capabilities allow for unique 3D designs such as a cylindrical (tube) heater. Cylindrical heater applications include gas and liquid heating in instrumentation such as gas chromatographs, mass spectrometers, and medical devices. Cylindrical heaters can be designed for process temperatures in excess of 600°C (1112°F) with watt densities up to 1000 W/in^2 (155 W/cm^2). With design flexibility to distribute wattage and vary the length as well as inside and outside diameter, this heater can be customized to optimize performance in the application.

Industries and Applications
High watt density, low power consumption, fast temperature ramp rates, and up to 1000°C (1832°F) temperatures make AlN heaters an excellent thermal solution. Whether the application is for a high temperature environmental instrumentation application in a power plant or for burning test samples, AlN heaters are a robust solution that can provide the reliability required in the application.

Advanced Ceramic Heaters are small in size but Mighty in Power!
Rapid Fire™ Aluminum Nitride (AlN) Heaters

Durex Industries' Rapid Fire aluminum nitride (AlN) ceramic heater solutions combine the thermal conductivity of aluminum and dielectric strength of specialty ceramics with physical properties similar to stainless steel. Additionally, a tungsten (W) RTD Sensor is integrated into the multi-layer heater construction to provide maximum control of this high watt density heater. New levels of machine design and thermal performance can be achieved through the excellent thermal, dielectric and physical properties of AlN heaters.

Ceramic heater technologies offer significant advantages over metal based sheath heaters that have limitations in thermal performance or material compatibility. Durex’ ceramic heaters can operate in atmospheric and vacuum environments up to 1000°C (1832°F). With its excellent thermal conductivity, AlN heaters can be designed with a multi-layer construction that can deliver up to 2000 W/in² (310 W/cm²). With chemical resistance to most acidic and alkaline solutions, these compact robust heaters are an ideal solution for demanding thermal applications. Ceramic heaters can be custom designed to optimize thermal performance for instrumentation and equipment applications.

Rapid Fire AlN Advantages

- Thermal conductivity equivalent to aluminum for fast and uniform thermal response
- Watt density higher than any metal or ceramic heater technology for concentrated heat in a small area
- Integrated RTD sensor for optimum heater temperature control
- Dielectric strength eliminates need for magnesium oxide insulation (MgO) layer used in metal heaters
- Heater temperature up to 1000°C (1832°F) for high temperature applications
- Low porosity non-stick surface reduces potential for process contamination
- Chemically inert to most acid and alkaline environments
- High mechanical strength, hardness and wear resistance for industrial applications

Heater Sheath Material Thermal and Physical Properties*

<table>
<thead>
<tr>
<th>Material</th>
<th>Thermal Conductivity (W/K·m)</th>
<th>Coefficient of Thermal Expansion (x10⁻⁶/°C)</th>
<th>Heat Capacity (J/g·K)</th>
<th>Density (g/cm³)</th>
<th>Vicker Hardness (GPa)</th>
<th>Young’s Modulus of Elasticity (GPa)</th>
<th>Flexural Strength (MPa)</th>
<th>Dielectric Strength (V/cm @ 25°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AlN</td>
<td>180</td>
<td>4.3</td>
<td>0.78</td>
<td>3.26</td>
<td>11.2</td>
<td>322</td>
<td>350</td>
<td>16 x 10⁶</td>
</tr>
<tr>
<td>96% Alumina (Al₂O₃)</td>
<td>30</td>
<td>10.2</td>
<td>0.88</td>
<td>3.75</td>
<td>15.7</td>
<td>370</td>
<td>400</td>
<td>18.1 x 10⁶</td>
</tr>
<tr>
<td>Silicon Nitride (Si₃N₄)</td>
<td>40</td>
<td>3.2</td>
<td>0.71</td>
<td>3.25</td>
<td>13.9</td>
<td>290</td>
<td>610</td>
<td>13 x 10⁶</td>
</tr>
<tr>
<td>Aluminum</td>
<td>180</td>
<td>23.6</td>
<td>0.9</td>
<td>2.7</td>
<td>0.11</td>
<td>69</td>
<td>276</td>
<td>N/A</td>
</tr>
<tr>
<td>Stainless Steel 316</td>
<td>12</td>
<td>5.8</td>
<td>0.5</td>
<td>8</td>
<td>1.26</td>
<td>180</td>
<td>520</td>
<td>N/A</td>
</tr>
</tbody>
</table>

* Property values reflect typical performance and can vary by adding alloys and / or process procedures.